
Tony Wildish!



Git + Docker 
tutorial






Preamble


•  This	presenta,on,	the	tutorial	material	
–  h"ps://bitbucket.org/TWildish/git-docker-tutorial/get/master.zip	
–  h"ps://www.nersc.gov/users/computa>onal-systems/genepool/genepool-training-and-tutorials/	

•  Pre-requisites	
–  See	h"ps://bitbucket.org/TWildish/git-docker-tutorial/overview	

–  Please	tell	me	you	did	that	already	J	
•  Today:	
–  3:00	–	4:00:	git	overview	+	hands-on	exercises	
–  4:00	–	5:00:	docker	overview	+	hands-on	exercises	
–  Familiarity	with	what’s	possible,	rather	than	a	deep-dive	
– Worked	examples	of	how	to	do	things	

-	2	-	



This tutorial


•  Git	
–  Basics	of	repositories,	local	and	remote	
–  How	to	recover	from	mistakes	
–  Working	with	branches	
–  Working	with	teams	

•  Docker	
–  Various	ways	to	run	&	manage	docker	containers	
–  A	real	bioinforma>cs	applica>on	example	

•  Thanks	to	Michael	Barton	
–  How	to	get	data	into/out	of	a	docker	container	
–  How	to	build	a	simple	docker	container	
–  ShiTer	–	docker	on	Cori,	Edison,	and	(eventually)	Genepool	

-	3	-	
h"ps://bitbucket.org/TWildish/git-docker-tutorial/get/master.zip	



Git history


•  Git	is	a	‘Version	Control	System’,	(VCS)	
•  Git	manages	collec,ons	of	files	(text,	small	binaries)	
–  Tracks	their	history,	versions	
–  Tracks	mul>ple	development	paths	
–  Lets	you	recover	previous	versions	

•  Git	is	the	VCS,	don’t	bother	with	anything	else	
–  CVS:	Concurrent	Version	System	->	completely	obsolete	
–  SVN:	SubVersioN	->	mostly	obsolete	(should	be!)	

•  Designed	by	Linus	Torvalds	(he	who	gave	us	Linux!)	
•  Q:	What	does	‘git’	stand	for?	

-	4	-	
h"ps://bitbucket.org/TWildish/git-docker-tutorial/get/master.zip	



Why use git?


•  Security	
–  Never	lose	your	code	again	
–  Code	is	safe	against	disk	failure/earthquakes/meteors	

•  Convenience	
–  Easily	deploy	your	code	in	several	places	
–  Easily	manage	several	versions	(prod,	dev,	…)	

•  Community	
–  Share	your	code	with	others	
–  Accept	bug-fixes	&	contribu>ons	in	controlled	manner	

•  Did	I	men,on…	
–  Never	lose	your	code	again	

-	5	-	
h"ps://bitbucket.org/TWildish/git-docker-tutorial/get/master.zip	



Git components


•  Command-line	interface,	the	‘git’	command	
•  Server	‘hos,ng’	plaRorms,	web-interface,	API	
–  Github.com:	the	original	git	hos>ng	service	
–  Bitbucket.com:	used	by	LBNL/JGI	
–  Gitlab.com:	recent	placorm	with	con>nuous	integra>on	

•  Hos,ng	plaRorms	bring	added	value	
–  Issue	tracking:	bug	reports,	coupled	to	git	history	
– Wiki:	managing	documenta>on	
–  Team	mgmt:	different	roles	(admin,	developer,	user)	
–  Access	mgmt:	read/write,	read-only,	private,	public	
–  ‘web-hooks’:	perform	custom	ac>ons	based	on	triggers	

-	6	-	
h"ps://bitbucket.org/TWildish/git-docker-tutorial/get/master.zip	



Git concepts


•  Repository	
–  Local	or	remote,	a	place	where	git	keeps	your	files	

•  On	your	local	disk,	or	on	a	remote	server	

•  Working	area	
–  Part	of	your	local	repository,	you	edit	your	code	there	

•  Staging	area	
–  Part	of	the	local	repository	where	git	tracks	changes	to	
your	working	area	

•  Branches,	tags	
– Ways	to	manage	sub-groups	of	files	in	a	repository	

-	7	-	
h"ps://bitbucket.org/TWildish/git-docker-tutorial/get/master.zip	



Git workflow


•  Change	files	in	your	working	area	
•  Tell	git	about	the	changes	
–  This	adds	the	files	to	the	‘staging	area’	
–  At	this	point,	s>ll	possible	to	undo,	leaving	no	trace	

•  Commit	those	changes	
– Make	them	permanent,	add	them	to	the	repository	
–  Now	those	changes	can	be	recovered,	any>me	later	

•  Push	the	changes	to	a	remote	repository	
–  Copy	your	local	repository	to	a	remote	server	
–  Now	you	have	a	remote	backup	

-	8	-	
h"ps://bitbucket.org/TWildish/git-docker-tutorial/get/master.zip	



More git concepts


•  Clone	
–  A	local	copy	of	a	remote	repository	
–  You	can	change	the	clone	–	you	own	it	
–  Access	to	remote	repository	controlled	by	its	owner	

•  Fork	
–  A	remote	copy	of	another	remote	repository	
–  You	own	the	fork,	which	you	can	now	clone	and	change	

•  A	non-concept:	‘The	Central	Repository’	
–  Git	is	completely	decentralized	
–  Can	work	with	mul>ple	remote	repositories,	simultaneously	

•  Confused?	
–  Let’s	get	stuck	into	the	exercises...	

-	9	-	
h"ps://bitbucket.org/TWildish/git-docker-tutorial/get/master.zip	



Git exercises


•  Cookbook	approach:	
–  Can	cut-&-paste,	but	be"er	to	type	in	commands	yourself	

•  Today:	do	exercises	1,	3,	and	4	if	you	have	,me	
–  1)	Basic	Commit	and	Tag	
–  2)	Undoing	Mistakes	
–  3)	Using	A	Remote	Repository	
–  4)	Using	Branches	
–  5)	Working	in	Teams	

•  Feel	free	to	work	through	the	rest	at	your	own	pace	

-	10	-	
h"ps://bitbucket.org/TWildish/git-docker-tutorial/get/master.zip	



Docker


-	11	-	



Docker overview


•  Docker	is	a	‘container	technology’	
–  Linux-specific	

•  can’t	run	Mac	OSX,	Windows	in	docker	containers	
•  But	can	run	docker	containers	on	Mac	OSX	&	Windows	

•  Similar	to	virtual	machines,	but	more	lightweight	
–  Smaller,	faster	to	start,	easier	to	maintain	and	manage	
–  Lighter	on	system	resources	=>	vastly	more	scalable	

•  Not	a	virtual	machine	
–  Shares	the	underlying	host	opera>ng	system	
–  Less	fully	isolated	from	the	host	=>	security	concerns	
– More	of	an	applica>on-wrapper	on	steroids	

-	12	-	
h"ps://bitbucket.org/TWildish/git-docker-tutorial/get/master.zip	



Docker components


•  The	‘docker’	command-line	tool	
–  A	bit	of	a	kitchen-sink,	your	one-stop	shop	for	everything	docker	

•  The	docker-daemon	
–  Works	behind	the	scenes	to	carry	out	ac>ons	
–  Manages	container	images,	processes	
–  Builds	containers	when	requested	
–  Runs	as	root,	not	a	user-space	daemon	

•  Docker.com	
–  All	things	docker:	installa>on,	documenta>on,	tutorials	

•  Dockerhub.com	
–  Repository	of	docker	containers.	Many	other	repositories	exist	

-	13	-	
h"ps://bitbucket.org/TWildish/git-docker-tutorial/get/master.zip	



Docker concepts

•  Image	

–  A	shrink-wrapped	chunk	of	s/w	+	its	execu>on	environment	
•  Image	tags	

–  Iden>fy	different	versions	of	an	image	
–  A	namespace	for	separa>ng	your	images	from	other	peoples	

•  Image	registry	
–  A	place	for	sharing	images	with	a	wider	community	
–  Dockerhub.com,	plus	some	domain-specific	registries	

•  Container	
–  A	process	instan>ated	from	an	image	

•  Dockerfile	
–  A	recipe	for	building	an	image:	download,	compile,	configure…	
–  Can	share	either	the	Dockerfile,	or	the	image,	or	both	

-	14	-	
h"ps://bitbucket.org/TWildish/git-docker-tutorial/get/master.zip	



Docker images: layers


•  Images	use	the	‘overlay	filesystem’	concept	
–  Image	is	built	by	adding	layers	to	a	base	
–  Each	command	in	the	Dockerfile	adds	a	new	layer	
–  Each	layer	is	cached	independently	
–  Layers	can	be	shared	between	mul>ple	images	
–  Change	in	one	layer	invalidates	all	following	layers	

•  Forces	rebuild	(similar	to	‘make’	dependencies…)	

•  Performance	considera,ons	
–  Too	many	layers	can	impede	performance	
–  Too	few	can	cause	excessive	rebuilding	
–  Building	produc>on-quality	images	takes	care,	prac>ce	

-	15	-	
h"ps://bitbucket.org/TWildish/git-docker-tutorial/get/master.zip	



Docker exercises


•  Again,	a	cookbook	approach	
•  Today:	1,	3	and	4	are	most	interes,ng	
–  1)	Running	Images	
–  2)	Cleaning	up	
–  3)	Running	a	Biobox	Container	
–  4)	Crea,ng	a	Docker	Image	
–  5)	Running	on	Cori	with	ShiTer	

-	16	-	

h"ps://bitbucket.org/TWildish/git-docker-tutorial/get/master.zip	



-	17	-	


